
VULNERABILITIES IN WEB APPLICATIONS
PAINFUL LESSONS; ADVICE (UN)HEEDED?

Raymond Ankobia

Mathematics Department, Royal Holloway, University of London
E-mail: r.k.ankobia@rhul.ac.uk, rkya@aol.com

Abstract

The Internet has made the world smaller. In our routine usage we tend to overlook that “www” really does mean
“world wide web” making virtually instant global communication possible. It has altered the rules of marketing and
retailing. An imaginative website can give the small company as much impact and exposure as its much larger
competitors. In the electronics, books, travel and banking sectors long established retail chains are increasingly
under pressure from e-retailers. All this, however, has come at a price – ever more inventive and potentially
damaging cyber crime. This paper aims to raise awareness by discussing common vulnerabilities and mistakes in
web application development. It also considers mitigating factors, strategies and corrective measures.

Key words: Security, Internet, Application, Vulnerability, Risk, Standards, RFC, PKI, Countermeasures, SSL

1. INTRODUCTION

 The Internet has become part and parcel of
the corporate agenda. But does the risk of
exposing information assets get sufficient
management attention?

 Extension of corporate portals for Business-to-
Business (B2B) or developments of websites for
Business-to-Customer (B2C) transactions have
been largely successful. But the task of risk
assessing vulnerabilities and the threats to
corporate information assets is still avoided by
many organisations. The desire to stay ahead of
the competition while minimising cost by
leveraging technology means the process is
driven by pressure to achieve results. What
suffers in the end is the application development
cycle; - this is achieved without security in mind.

 Section 1 of this paper introduces the world of
e-business and sets the stage for further
discussions. Section 2 looks at common
vulnerabilities inherent in web application
development. Section 3 considers
countermeasures and strategies that will
minimise, if not eradicate. some of the
vulnerabilities. Sections 4 and 5 draw
conclusions and look at current trends and future
expectations.

1.1 Underlying Infrastructure

 The TCP/IP protocol stack, the underlying
technology is known for lack of security on many
of its layers. Most applications written for use on
the Internet use the application layer, traditionally
using HTTP on port 80 on most web servers.

 The HTTP protocol is stateless and does not
provide freshness mechanisms for a session
between a client and server; hence, many
hackers take advantage of these inherent
weaknesses. TCP/IP may be reliable in providing
delivery of Internet packets, but it does not
provide any guarantee of confidentiality, integrity
and little identification.

 As emphasised in [1], Internet packets may
traverse several hosts between source and
destination addresses. During its journey it can
be intercepted by third parties, who may copy,
alter or substitute them before final delivery.
Failure to detect and prevent attacks in web
applications is potentially catastrophic.

 Attacks are loosely grouped into two types,
passive and active. Passive attackers [6] engage
in eavesdropping on, or monitoring of,
transmissions. Active attacks involve some
modification of the data stream or creation of
false data streams [6].

2. COMMON VULNERABILITIES

 This is by no means an exhaustive list but an
indication of some serious flaws exploited by
hackers. Hacking Exposed: Web Applications
(ISBN 007222438X) as a good source for the
subject area.

2.1 Buffer Overflow Attack

 Usually perpetrated in a form of stack, heap or
format string attack [3]. Without doubt, one of the
oldest problems exposed by poor programming;
yet attacks continue to be perpetrated on large
scale, simply due to lack of rigorous security
routines in web applications. To get the system
to run their own code, attackers construct an
input string sometimes with other malicious code
that is long enough to overrun memory space
assigned to it [7]. By doing so, this spills over
and overwrites the stack below, overwriting what
was initially in that address space. If the code
contains malicious payload, it may subvert the
system and escalate any privileges it may have
garnered.

2.2 SQL Injection Attack

 Most e-commerce web sites use dynamic
content to attract and appeal to potential
customers by displaying their wares using
dynamic SQL queries and front-end scripts. An
attacker could inject special characters and
commands into a SQL database and modify the
intended query. Chaining additional commands
with intent of causing unexpected behavior could
alter the meaning to a query. Not only could the
attacker be able to read the entire database, but
also in some circumstances, alter prices of these
commodities.

2.3 Cross Site Scripting Attacks

(XSS Attacks)

 This attack is executed by embedding
malicious message in an HTML form [4] [3] and
posting it as a message to say a newsgroup or
bulletin board. By viewing the message, the user
unintentionally gets the code interpreted and
executed by the web browser triggering its
associated payload.

2.4 Input Validation Attack

 Typically used by most active attackers to
check for client side validation of fields and if
successful then try to escalate privileges gained
[3]. Poorly validated client-side (typically a web
browser) allows an attacker to tamper with
parameters sent to the server. Server-side may
also compromised if trust is implicit and
validation poorly executed from the client-side.

2.5 “Phishing” Attack

 This attack is mainly executed due to
vulnerability in some versions of web browsers.
Attackers are able to create bogus websites and
masquerade as legitimate commercial ones.
They normally operate by sending spoofed
emails to unsuspecting customers, advising them
to visit their bank’s website to reactivate or
update their accounts. The embedded addresses
in these emails tend to have some hidden
characters cleverly constructed to make the page
appear to be a legitimate one.

 On clicking the embedded website address,
the unsuspecting user is redirected to a fake
website where the credentials and details of
bank accounts are taken and later used to empty
the accounts.

 [4] This anomaly is due to obfuscation
techniques used by the URL to parse
information. URL may be parsed in different
ways using decimal, hexadecimal and dWord
format. A particular vulnerability in Internet
explorer allowed an attacker to construct and
hide information by simply using the “@” symbol
in ways that makes it possible to redirect traffic to
bogus sites.

2.6 Mobile code

 Most common languages used for developing
mobile code include Java, ActiveX control and
Shockwave. Traditionally the programme gets
downloaded from a web server onto the
customer’s machine. Environments used for
execution include Virtual Machines (in browsers)
or downloadable plug-ins. These programmes
could be maliciously crafted to subvert the
security and system functionality by causing
crashes and disruption of normal operating
environment.

2.7 Insecure Configuration
Management

 The communicating parties end points,
especially their web servers, are poorly
configured. Often ignored, but the area most
attacked by hackers as a way of bypassing
security offered by encryption and other security
mechanisms [4]. Apache and IIS dominate
commercial deployment of web servers and
some of the earlier releases are riddled with
bugs. Simply installing these applications with
default settings is a bad practice. Poorly
programmed sample scripts are exploited by
attackers who may easily take control of the
server resources.

2.8 Google Hacking

 Google’s search engine traverses the Internet,
crawling websites, and taking snapshots of each
web page it examines and caches its results.
Next time a query is received, the search is
performed on these cached pages, allowing for
faster retrieval [4]. Hackers exploit these caches
for vulnerable sites. The mechanism used by
Google is explained in great depth in a white
paper written by Foundstone
(www.foundstone.com) called SiteDigger,. Tools
such as these are the “Swiss army knives” of
hackers. Using search engines, hackers find
vulnerability scanning reports and intrusion
detection alerts and log files. These are then
used to find suitable targets to exploit.

3. STRATEGIES And
COUNTERMEASURES

 This section discusses remedial strategies and
countermeasures (not in any order) that will
alleviate threats and vulnerabilities commonly
found in web application development.

3.1 Security Management

Programmes

 A security policy drafted and implemented
from a holistic viewpoint with full approval of
senior executives. There must be security
education and awareness campaigns for the
development team and administrators to foster a
secure development lifecycle. Policies will
ensure secure configuration of web servers and
back end databases. Key amongst education
campaigns is social engineering [8][7] where the
attacker deceitfully extracts information directly
from authorized people.

3.2 Deployment of Application
Firewalls

 This is a fairly new concept that offers use of
gateways that specifically operate at the
application layer. These are stateful, intelligent
and content driven programmes/appliances that
operate by checking web content. This allows for
evaluation of attack signatures and exploits and
prevents them from impacting on the targets.

 They look out and allow legitimate requests of
users to reach the backend servers and
databases whilst preventing, logging and alerting
administrators of malicious activities. Even
though these may be able to do a far better job
of analysing application content including
graphics, they are not a panacea and the battle
is far from over. Malicious and encrypted content
will still get through firewalls [6].

3.3 Using SSL/TLS (HTTPS) Protocol

 SSL/TLS has become the de-facto protocol for
deploying secure web applications running on
HTTP. It is based on Public Key Technology and
X509 certificates, and defined by the Internet
Engineering Task Force (IEFT) RFC 2246. This
is supported in most web browsers and provides
a secure tunnel between the client and the
server. The server side almost always
authenticates to the client by making available its
public key to the client for verification; thereby
offering a mechanism to identify rogue servers
that impersonate by spoofing IP addresses with
wrong DNS entries [8][7].

 In most situations, the client side
authentication is optional. This is due largely to
the overhead of requiring every client to have a
public key. This provides confidentiality, integrity
and authenticity of transactions between both
ends of the traffic. However, it must be
emphasised that hackers concentrate on
attacking the endpoints’; poor deployment and
implementation of applications and databases
make easy break-ins.

 Poor implementation of a secure protocol does
not make it any better. Attention to detailed
instructions from these specifications is
imperative to get it right.

3.4 Sandboxing and Code Signing

 This idea for using sandboxes and signing of
code (especially mobile code) is to introduce
trust and assurance to the end user as to the
origin of the application in question. Sandboxes
are restricted and non-privileged operating
environments [2][1]. Java Applets use this
approach by encapsulating permissions and
rights to resources within the programme itself.
This provides a safer environment as the Java
Virtual Machine (embedded in most browsers)
consults the security manager for any violations
or privileged system calls that may compromise
the local computer. The author of a code may
digitally sign it to give some authenticity and
confidence to the end user; allowing that
signature to be publicly verified using a certified
public directory.

 Authenticode is the approach by Microsoft for
digitally signing code to provide trust and
authenticity of origin. Developers of ActiveX
controls/programmes may likewise sign the code
to give similar level of trust and authenticity.
However, discretion is left entirely to the user to
check the authenticity of the digital signatures.
[2] Clearly declares, “A digital signature does not,
however, provide any guarantee of benevolence
or competence”. The Sandboxing (by Sun
Microsystems) approach offers better assurance
since it comes with a built-in security reference
monitor that checks the access controls of the
objects. These architectures are designed with
Public Key Infrastructure (PKI) in mind and
require education and awareness programmes
on key management and certification authorities.

3.5 Use of Honey pots

 These are used to lure potential crackers /
hackers. The principle is one of falsifying
information and placing it where hackers will
eventually find it. The original concept seem to
have come from [9] where he managed to bait
hackers with falsified information which
eventually led to their capture. This allows for the
footprints of malicious activities to be logged,
monitored and analysed. They help analyse the
weak points that may are exposed with
subsequent introduction of countermeasures that
will seal any weaknesses that may be exploited.
Use of this technology does have some legal
implications. There is a debate as to whether this
is enticement or entrapment and may require
legal interpretation before use.

3.6 Using SiteDigger

 This is a tool developed by Foundstone
Professional Services to help web application
developers and administrators test the efficacy of
security measures incorporated during design. It
works in conjunction with certain API’s which will
need to be downloaded from Google’s website
(http://www.google.com/apis/). This tool will help
the web application developer or administrator to
scan and generate reports of any leakages on a
particular website.

3.7 ISO/IEC 17799 (Part I)

 This was originally a British code of practice
for Information Security Management and was
later adopted by ISO as a Standard [5]. This has
many facets for compliance and one of them is
Systems Development and Maintenance. Part II
of this, is for accreditation (currently being vetted
by ISO for standardisation). It engages the
certifying party through a rigorous compliance
process, which includes the integration of
controls and audit trails built into application
systems. It encourages stringent checks and
controls, Input data validation, message
authentication to guard against unauthorised
changes, output validation to ensure correct
input and processing (the old adage “Garbage In,
Garbage out), and the use of cryptographic
controls to protect the confidentiality and integrity
of information.

 It also envisages strict and secure change
control procedures and principle of least
principle, by making sure that support developers
are only given access to areas of their domain.

 3.8 Security Audit

 Self-Hack Audit [1]. The self-hack audit is an
approach that uses methodology used by
developers to identify and eliminate security
weaknesses in an application before they are
discovered and compromised. This will include
checking login prompts, brute forcing passwords
and setting up limits for login attempts.

 Penetration Testing. Particular mention is
made of The Open Web Application Security
Project (OWASP), which is an Open source
platform used as a benchmark for testing web
application vulnerabilities. Below is a diagram
(fig. 1) taken from their website

Fig 1. The OWASP Web Application Penetration Check

 4. CONCLUSION

 Internet transactions must reassure customers
by maintaining confidentiality and integrity to the
same extent as transactions using traditional
manual procedures. Authentication mechanisms
must ensure that customers are protected
adequately so that their credentials are not
compromised through false pretences.

 Another key issue is that of non-repudiation.
The procedures and mechanisms implemented
for transactions over the web must make
provisions for the protection of parties involved in
a transaction. These can be achieved through
use of Third Party services such creation of
certificates. Currently, in most web transactions
only the sever side (web servers) authenticate to
the client (in this case, the customer using a
browser). Implicitly, the use of credit cards is
deemed enough to authenticate the customer. In
highly secure transactions however, there may
be the explicit use of certificates for both parties.
This perhaps, will usher in the era of PKI with its
key management challenges

5. THE FUTURE

 The uptake of websites for e-business has
now prompted a surge in digital content and
media streaming services. Downloading MP3’s is
becoming the preferred choice for music lovers
and the fight to protect such media content and
piracy has only started. Movements such as
DMCA are becoming more aggressive in pursing
copyright violations on digital content.

 E-commerce will continue to boom but so will
attacks on infrastructure used in providing these
services. Explosion of PKI and identity based
crypto systems will provide mechanisms for
ensuring confidentiality, integrity and availability
of these services, which currently is being
provided using traditional point of sale and
accounting systems

 REFERENCES

[1]. H. F. Tipton and Micki Krause,
Information Security Management
Handbook, Boca Raton, CRC Press LLC,
2003.

[2]. S Bosworth and M.E. Kabay, Computer
Security Handbook 4e, Wiley & Sons, 2002

[3]. G Hoglund and Gary McGraw,
Exploiting Software: How to break code ,
Addison Wesley, Pearson Education, 2004

[4]. Stuart McClure, et al Hacking Exposed,
network security secrets & solutions 4e,
McGraw-Hill / Osborne

[5]. ISO/IEC 17799 Part I – Code of
Practice for Information Security
Management, First Edition 2000-2001.

[6]. William Stallings, Network Security
Essentials, Applications and Standards
2e, Prentice Hall, 2003

[7]. Dorothy E Denning, Information
Warfare and Security , Addison Wesley,
1999

[8]. Ross Anderson, Security Engineering,
Wiley, 2001

[9]. Cliff Stoll, The Cuckoo’s Egg, Simon &
Schuster Inc, 2000

